1,512 research outputs found

    A discrepancy principle for the Landweber iteration based on risk minimization

    Get PDF
    In this paper we propose a criterion based on risk minimization to stop the Landweber algorithm for estimating the solution of a linear system with noisy data. Under the hypothesis of white Gaussian noise, we provide an unbiased estimator of the risk and we use it for defining a variant of the classical discrepancy principle. Moreover, we prove that the proposed variant satisfies the regularization property in expectation. Finally, we perform some numerical simulations when the signal formation model is given by a convolution or a Radon transform, to show that the proposed method is numerically reliable and furnishes slightly better solutions than classical estimators based on the predictive risk, namely the Unbiased Predictive Risk Estimator and the Generalized Cross Validation

    Lattice Simulation of Nuclear Multifragmentation

    Full text link
    Motivated by the decade-long debate over the issue of criticality supposedly observed in nuclear multifragmentation, we propose a dynamical lattice model to simulate the phenomenon. Its Ising Hamiltonian mimics a short range attractive interaction which competes with a thermal-like dissipative process. The results here presented, generated through an event-by-event analysis, are in agreement with both experiment and those produced by a percolative (non-dynamical) model.Comment: 8 pages, 3 figure

    Sign-Perturbed Sums (SPS) with Asymmetric Noise: Robustness Analysis and Robustification Techniques

    Get PDF
    Sign-Perturbed Sums (SPS) is a recently developed finite sample system identification method that can build exact confidence regions for linear regression problems under mild statistical assumptions. The regions are well-shaped, e.g., they are centred around the least-squares (LS) estimate, star-convex and strongly consistent. One of the main assumptions of SPS is that the distribution of the noise terms are symmetric about zero. This paper analyses how robust SPS is with respect to the violation of this assumption and how it could be robustified with respect to non-symmetric noises. First, some alternative solutions are overviewed, then a robustness analysis is performed resulting in a robustified version of SPS. We also suggest a modification of SPS, called LAD-SPS, which builds exact confidence regions around the least-absolute deviation (LAD) estimate instead of the LS estimate. LAD-SPS requires less assumptions as the noise needs only to have a conditionally zero median (w.r.t. the past). Furthermore, that approach can also be robustified using similar ideas as in the LS-SPS case. Finally, some numerical experiments are presented

    Asymptotic properties of SPS confidence regions

    Get PDF
    Sign-Perturbed Sums (SPS) is a system identification method that constructs non-asymptotic confidence regions for the parameters of linear regression models under mild statistical assumptions. One of its main features is that, for any finite number of data points and any user-specified probability, the constructed confidence region contains the true system parameter with exactly the user-chosen probability. In this paper we examine the size and the shape of the confidence regions, and we show that the regions are strongly consistent, i.e., they almost surely shrink around the true parameter as the number of data points increases. Furthermore, the confidence region is contained in a marginally inflated version of the confidence ellipsoid obtained from the asymptotic system identification theory. The results are also illustrated by a simulation example

    The Hough Transform and the Impact of Chronic Leukemia on the Compact Bone Tissue from CT-Images Analysis

    Get PDF
    Computational analysis of X-ray Computed Tomography (CT) images allows the assessment of alteration of bone structure in adult patients with Advanced Chronic Lymphocytic Leukemia (ACLL), and may even offer a powerful tool to assess the development of the disease (prognostic potential). The crucial requirement for this kind of analysis is the application of a pattern recognition method able to accurately segment the intra-bone space in clinical CT images of the human skeleton. Our purpose is to show how this task can be accomplished by a procedure based on the use of the Hough transform technique for special families of algebraic curves. The dataset used for this study is composed of sixteen subjects including eight control subjects, one ACLL survivor, and seven ACLL victims. We apply the Hough transform approach to the set of CT images of appendicular bones for detecting the compact and trabecular bone contours by using ellipses, and we use the computed semi-axes values to infer information on bone alterations in the population affected by ACLL. The effectiveness of this method is proved against ground truth comparison. We show that features depending on the semi-axes values detect a statistically significant difference between the class of control subjects plus the ACLL survivor and the class of ACLL victims

    Highly Automated Dipole EStimation (HADES)

    Get PDF
    Automatic estimation of current dipoles from biomagnetic data is still a problematic task. This is due not only to the ill-posedness of the inverse problem but also to two intrinsic difficulties introduced by the dipolar model: the unknown number of sources and the nonlinear relationship between the source locations and the data. Recently, we have developed a new Bayesian approach, particle filtering, based on dynamical tracking of the dipole constellation. Contrary to many dipole-based methods, particle filtering does not assume stationarity of the source configuration: the number of dipoles and their positions are estimated and updated dynamically during the course of the MEG sequence. We have now developed a Matlab-based graphical user interface, which allows nonexpert users to do automatic dipole estimation from MEG data with particle filtering. In the present paper, we describe the main features of the software and show the analysis of both a synthetic data set and an experimental dataset
    corecore